Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Adv Sci (Weinh) ; : e2205445, 2023 Jun 02.
Article in English | MEDLINE | ID: covidwho-20244847

ABSTRACT

The spread of coronavirus disease 2019 (COVID-19), caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2), has progressed into a global pandemic. To date, thousands of genetic variants have been identified among SARS-CoV-2 isolates collected from patients. Sequence analysis reveals that the codon adaptation index (CAI) values of viral sequences have decreased over time but with occasional fluctuations. Through evolution modeling, it is found that this phenomenon may result from the virus's mutation preference during transmission. Using dual-luciferase assays, it is further discovered that the deoptimization of codons in the viral sequence may weaken protein expression during virus evolution, indicating that codon usage may play an important role in virus fitness. Finally, given the importance of codon usage in protein expression and particularly for mRNA vaccines, it is designed several codon-optimized Omicron BA.2.12.1, BA.4/5, and XBB.1.5 spike mRNA vaccine candidates and experimentally validated their high levels of expression. This study highlights the importance of codon usage in virus evolution and provides guidelines for codon optimization in mRNA and DNA vaccine development.

2.
Mol Biol Evol ; 40(4)2023 04 04.
Article in English | MEDLINE | ID: covidwho-2304585

ABSTRACT

Coronaviruses are single-stranded, positive-sense RNA viruses that can infect many mammal and avian species. The Spike (S) protein of coronaviruses binds to a receptor on the host cell surface to promote viral entry. The interactions between the S proteins of coronaviruses and receptors of host cells are extraordinarily complex, with coronaviruses from different genera being able to recognize the same receptor and coronaviruses from the same genus able to bind distinct receptors. As the coronavirus disease 2019 pandemic has developed, many changes in the S protein have been under positive selection by altering the receptor-binding affinity, reducing antibody neutralization activities, or affecting T-cell responses. It is intriguing to determine whether the selection pressure on the S gene differs between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses due to the host shift from nonhuman animals to humans. Here, we show that the S gene, particularly the S1 region, has experienced positive selection in both SARS-CoV-2 and other coronaviruses. Although the S1 N-terminal domain exhibits signals of positive selection in the pairwise comparisons in all four coronavirus genera, positive selection is primarily detected in the S1 C-terminal domain (the receptor-binding domain) in the ongoing evolution of SARS-CoV-2, possibly owing to the change in host settings and the widespread natural infection and SARS-CoV-2 vaccination in humans.


Subject(s)
COVID-19 , Animals , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , COVID-19 Vaccines , Mammals/metabolism
3.
Med Rev (Berl) ; 2(1): 3-22, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1879342

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused immense losses in human lives and the global economy and posed significant challenges for global public health. As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has evolved, thousands of single nucleotide variants (SNVs) have been identified across the viral genome. The roles of individual SNVs in the zoonotic origin, evolution, and transmission of SARS-CoV-2 have become the focus of many studies. This review summarizes recent comparative genomic analyses of SARS-CoV-2 and related coronaviruses (SC2r-CoVs) found in non-human animals, including delineation of SARS-CoV-2 lineages based on characteristic SNVs. We also discuss the current understanding of receptor-binding domain (RBD) evolution and characteristic mutations in variants of concern (VOCs) of SARS-CoV-2, as well as possible co-evolution between RBD and its receptor, angiotensin-converting enzyme 2 (ACE2). We propose that the interplay between SARS-CoV-2 and host RNA editing mechanisms might have partially resulted in the bias in nucleotide changes during SARS-CoV-2 evolution. Finally, we outline some current challenges, including difficulty in deciphering the complicated relationship between viral pathogenicity and infectivity of different variants, and monitoring transmission of SARS-CoV-2 between humans and animals as the pandemic progresses.

4.
Mol Biol Evol ; 39(3)2022 03 02.
Article in English | MEDLINE | ID: covidwho-1722547

ABSTRACT

In new epidemics after the host shift, the pathogens may experience accelerated evolution driven by novel selective pressures. When the accelerated evolution enters a positive feedback loop with the expanding epidemics, the pathogen's runaway evolution may be triggered. To test this possibility in coronavirus disease 2019 (COVID-19), we analyze the extensive databases and identify five major waves of strains, one replacing the previous one in 2020-2021. The mutations differ entirely between waves and the number of mutations continues to increase, from 3-4 to 21-31. The latest wave in the fall of 2021 is the Delta strain which accrues 31 new mutations to become highly prevalent. Interestingly, these new mutations in Delta strain emerge in multiple stages with each stage driven by 6-12 coding mutations that form a fitness group. In short, the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from the oldest to the youngest wave, and from the earlier to the later stages of the Delta wave, is a process of acceleration with more and more mutations. The global increase in the viral population size (M(t), at time t) and the mutation accumulation (R(t)) may have indeed triggered the runaway evolution in late 2020, leading to the highly evolved Alpha and then Delta strain. To suppress the pandemic, it is crucial to break the positive feedback loop between M(t) and R(t), neither of which has yet to be effectively dampened by late 2021. New waves after Delta, hence, should not be surprising.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Humans , Mutation , Pandemics , SARS-CoV-2/genetics
5.
Zool Res ; 42(6): 834-844, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1515719

ABSTRACT

Understanding the zoonotic origin and evolution history of SARS-CoV-2 will provide critical insights for alerting and preventing future outbreaks. A significant gap remains for the possible role of pangolins as a reservoir of SARS-CoV-2 related coronaviruses (SC2r-CoVs). Here, we screened SC2r-CoVs in 172 samples from 163 pangolin individuals of four species, and detected positive signals in muscles of four Manis javanica and, for the first time, one M. pentadactyla. Phylogeographic analysis of pangolin mitochondrial DNA traced their origins from Southeast Asia. Using in-solution hybridization capture sequencing, we assembled a partial pangolin SC2r-CoV (pangolin-CoV) genome sequence of 22 895 bp (MP20) from the M. pentadactyla sample. Phylogenetic analyses revealed MP20 was very closely related to pangolin-CoVs that were identified in M. javanica seized by Guangxi Customs. A genetic contribution of bat coronavirus to pangolin-CoVs via recombination was indicated. Our analysis revealed that the genetic diversity of pangolin-CoVs is substantially higher than previously anticipated. Given the potential infectivity of pangolin-CoVs, the high genetic diversity of pangolin-CoVs alerts the ecological risk of zoonotic evolution and transmission of pathogenic SC2r-CoVs.


Subject(s)
COVID-19/veterinary , Evolution, Molecular , Pangolins/virology , SARS-CoV-2/genetics , Animals , Genome, Viral , Phylogeny , RNA, Viral/genetics
7.
Sci Bull (Beijing) ; 66(22): 2297-2311, 2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1065574

ABSTRACT

The pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has caused immense global disruption. With the rapid accumulation of SARS-CoV-2 genome sequences, however, thousands of genomic variants of SARS-CoV-2 are now publicly available. To improve the tracing of the viral genomes' evolution during the development of the pandemic, we analyzed single nucleotide variants (SNVs) in 121,618 high-quality SARS-CoV-2 genomes. We divided these viral genomes into two major lineages (L and S) based on variants at sites 8782 and 28144, and further divided the L lineage into two major sublineages (L1 and L2) using SNVs at sites 3037, 14408, and 23403. Subsequently, we categorized them into 130 sublineages (37 in S, 35 in L1, and 58 in L2) based on marker SNVs at 201 additional genomic sites. This lineage/sublineage designation system has a hierarchical structure and reflects the relatedness among the subclades of the major lineages. We also provide a companion website (www.covid19evolution.net) that allows users to visualize sublineage information and upload their own SARS-CoV-2 genomes for sublineage classification. Finally, we discussed the possible roles of compensatory mutations and natural selection during SARS-CoV-2's evolution. These efforts will improve our understanding of the temporal and spatial dynamics of SARS-CoV-2's genome evolution.

8.
Natl Sci Rev ; 8(1): nwaa246, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-793335

ABSTRACT

How many incoming travelers (I0 at time 0, equivalent to the 'founders' in evolutionary genetics) infected with SARS-CoV-2 who visit or return to a region could have started the epidemic of that region? I0 would be informative about the initiation and progression of epidemics. To obtain I0 , we analyze the genetic divergence among viral populations of different regions. By applying the 'individual-output' model of genetic drift to the SARS-CoV-2 diversities, we obtain I0 < 10, which could have been achieved by one infected traveler in a long-distance flight. The conclusion is robust regardless of the source population, the continuation of inputs (It for t > 0) or the fitness of the variants. With such a tiny trickle of human movement igniting many outbreaks, the crucial stage of repressing an epidemic in any region should, therefore, be the very first sign of local contagion when positive cases first become identifiable. The implications of the highly 'portable' epidemics, including their early evolution prior to any outbreak, are explored in the companion study (Ruan et al., personal communication).

10.
Natl Sci Rev ; 7(6): 1012-1023, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-3293

ABSTRACT

The SARS-CoV-2 epidemic started in late December 2019 in Wuhan, China, and has since impacted a large portion of China and raised major global concern. Herein, we investigated the extent of molecular divergence between SARS-CoV-2 and other related coronaviruses. Although we found only 4% variability in genomic nucleotides between SARS-CoV-2 and a bat SARS-related coronavirus (SARSr-CoV; RaTG13), the difference at neutral sites was 17%, suggesting the divergence between the two viruses is much larger than previously estimated. Our results suggest that the development of new variations in functional sites in the receptor-binding domain (RBD) of the spike seen in SARS-CoV-2 and viruses from pangolin SARSr-CoVs are likely caused by natural selection besides recombination. Population genetic analyses of 103 SARS-CoV-2 genomes indicated that these viruses had two major lineages (designated L and S), that are well defined by two different SNPs that show nearly complete linkage across the viral strains sequenced to date. We found that L lineage was more prevalent than the S lineage within the limited patient samples we examined. The implication of these evolutionary changes on disease etiology remains unclear. These findings strongly underscores the urgent need for further comprehensive studies that combine viral genomic data, with epidemiological studies of coronavirus disease 2019 (COVID-19).

SELECTION OF CITATIONS
SEARCH DETAIL